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ABSTRACT

In this paper, we propose a variational learning model that effectively
exploits the structural similarities for image representation, and con-
struct a deep network based on this model for image interpolation.
Based on the local dependency, our learning model represents an
image as the three-dimensional features. Besides two coordinate di-
mensions, an additional neighboring variation dimension is added to
encode every pixel as the variation to its nearest low-resolution pix-
el by the local similarity. This added dimension lowers the risk of
over-fitting for learning approaches and constructs abundant struc-
tural correspondences for inferring the missing information lost in
image degradation. Then, this three-dimensional features are natu-
rally modeled, extracted and refined by an end-to-end trainable re-
current convolutional network for image interpolation. Comprehen-
sive experiments demonstrate that our method leads to a surprisingly
superior performance and offers new state-of-the-art benchmark.

Index Terms— Variation Learning, deep learning, image inter-
polation

1. INTRODUCTION

Image interpolation is a fundamental research topic that reconstructs
a high-resolution (HR) image from one of its down-sampled low-
resolution (LR) versions by estimating all missing pixels during the
down-sampling process. Util now, various interpolation methods
could be categorized into three classes: polynomial-based methods,
geometry-guided methods and learning-based methods.

Polynomial-based methods, such as Bilinear and Bicubic meth-
ods [1], interpolate images by convolving neighboring pixels with
the fixed kernels. They have a relatively low computational complex-
ity but their results contain noticeable artifacts (e.g. blurring, ring-
ing, jaggies and zippering) and unnatural representations of edges.

To utilize local structural information and achieve visually pleas-
ing results, geometry guided methods are proposed, including explic-
it geometry and implicit methods. Explicit geometry guided method-
s detect the geometric features, e.g. edges and local covariances, and
adjust the interpolation lattice or directions dynamically [2, 3]. To
reduce the risk of inaccurate edge detection, several methods [4, 5]
are proposed to model edges with soft models to fuse the information
from multiple edge directions.

The other kind of geometry guided methods — implicit geometry
guided methods — embed statistical geometric information into an
optimization function and obtain an adaptive filter that maximizes

*Corresponding author. This work was supported by National Natural
Science Foundation of China under contract No. U1636206 and Culture De-
velopment Funding under Grant No.2016-288.

978-1-5090-2175-8/17/$31.00 ©2017 IEEE

1652

the function [6—10]. This joint modeling for LR and HR pixels de-
scribes their correlations more intrinsically and makes the implicit
geometry guided methods achieve superior performance.

Polynomial-based and implicit geometry guided methods pre-
dict HR pixels via a hand-crafted pattern or an adaptive filter esti-
mated based on local image structures. In these methods, the effec-
tive knowledge from external natural images have not been utilized
for image modelling, which leaves space for further improvement of
image interpolation.

Later on, learning-based interpolation approaches have been at-
tracting much attention. Learning the mapping from LR pixels to
missing HR pixels from a large collected data set, these methods
achieve very promising results with rather high computational effi-
ciency. In [11,12], a joint model with sparse dictionary learning,
nonlocal patch prior and autoregressive model is constructed to ef-
fectively capture and further make full use of the nonlocal similarity
to facilitate the HR pixel estimation. However, only utilizing the in-
ternal prior within the LR image leads to performing poorly in the
non-repetitive regions. In [13], random forests are built to partition
the natural image patch space into numerous subspaces. In each sub-
space, a linear regression model is exploited to transform the LR im-
age patch into an HR one. However, the subspace partition and local
regression are optimized separately and the local regression is based
on a linear model. These two factors limit its modeling capacity to
model the complex mapping relationship.

Recently, a series of successful deep learning methods have
emerged, e.g. image denoising [14, 15], completion [16], super-
resolution (SR) [17, 18]. Due to the different configurations of
image SR and interpolation, existing image SR works cannot be
directly applied for image interpolation, where the sampling ma-
trix or observation matrix is usually canonical matrix and leads to
discontinuous degraded signals. Both these huge successes and the
dilemma for image interpolation guide us to explore constructing a
deep network based on our proposed variation image representation
for image interpolation.

In this paper, we propose a three-dimensional variation image
representation that well fits for solving the image interpolation prob-
lem. The representation encodes a pixel as its variation value to the
corresponding top-left neighboring LR pixel and extends to a three-
dimensional representation. This effective modeling for the local
dependency decreases the correlation in the estimated mapping from
LR to HR images, and makes the learned priors more effective, as
well as increases structural correspondences. Based on this mod-
el, we propose a variation learning network (VLN) to estimate the
variation value between the HR pixel and its nearest LR pixel. Ex-
tensive experimental results demonstrate that, our method leads to
a surprisingly superior performance than other methods and offers
new state-of-the-art benchmark.

The rest of this paper is organized as follows. Section 2 in-
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troduces our three-dimensional variation image model and briefly
compares it with the popular residue learning model. In Section 3,
we attempt to design a deep network for image interpolation. Ex-
perimental results are presented in Section 4. Finally, concluding
remarks are given in Section 5.

2. THE PROPOSED THREE DIMENSIONAL VARIATION

IMAGE MODEL
Learning-based approaches [| I—13] aim to solve the image interpo-
lation by estimating the inverse mapping
x = fa(y), )

for image degradation y = Dx + v, where D is a decimal ma-
trix and v is the random noise term. These approaches that directly
model the mapping between y and x usually suffer from several
drawbacks: 1) the learned model over-fits to the regularity between
low-frequency parts of image signals and high-frequency details are
neglected; 2) the priors are imposed on the whole x, thus the method
is hard to learn useful guidances for recovering the high frequency
image signal; 3) useful structural correspondences in the high fre-
quency domain may be neglected when directly modeling x.

To overcome the aforementioned drawbacks, we propose a nov-
el image model — three-dimensional variation image representation.
Through embedding the local redundancy, we can remove the auto-
correlation of x and y as well their correlation, and to construct more
useful structural correspondences within an image.

88 x, () 88 A,

Fig. 1. The three-dimensional variation representation based on local
redundancy.

The aforementioned image representation is intuitively shown in
Fig. 1. Based on the local redundancy, a local pixel could be repre-
sented by the summation of one of its nearest neighbors and a very
small difference value, called the variation. Correspondingly, an HR
pixel could be represented by the summation of the top-left LR pixel
in the corresponding 2 X 2 non-overlapping patch (for convenience,
we take 2% enlargement as example all through this paper but note
that, our method is general to apply for other times enlargement and
our method is also evaluated in 3 enlargement in our experiment)
and a difference value between the LR and HR pixels. This split op-
eration removes much of auto-correlation within the image. Equally,
an HR image x is split into four parts x;;, Ax¢r, Axp and Axp,.

Xt = Y
AXyr = Xep — Xtls 2
Axy = Xy — X,
AXpr = Xpr — X,

where xy;, X¢r, Xy, and Xy, are the sub-images consisting of the top-
left, top-right, bottom-left and bottom-right pixels extracted from ev-
ery 2 x 2 non-overlapping patches. The last three terms stack as a
tensor as shown in Fig. 1 where two axises signify the locations, and
another axis signifies the neighbors domain.

Thus, x is reformulated as

X = X + AX, 3)

where x. denotes the top-left pixel (in fact, a nearest LR pixel) in
every 2 x 2 non-overlapped patch. For convenience, Ax is defined
as (2) with Axy; = 0. In image interpolation, x. is given (equivalent
to y), thus we can focus on estimating Ax which naturally leads to
a new learning paradigm

x = fr(y) +%e. )

fr(-) is the learned inverse recovery process to estimate X — Xe
fromy.
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Fig. 2. Patch repetitiveness for several image models.

Our novel proposed image representation (4) has three major
advantages compared with (1):

e Fitting to high frequency image signals. Based on local de-
pendency, low frequency part is removed, and the regularity
between the high frequency is focuses on.

e Direct priors. The priors are imposed on the missing part of x
now, which benefits learning useful guidance for recovering
the high frequency part of the image signal.

e Plenty of structural correspondences. We also compare (4)
and (1) from the perspective of structural correspondences on
their patch repetitiveness that measures the potential redun-
dancy within an image. We calculate it via mean squared er-
ror (MSE) for the most similar patches of each 5 x5 patch. We
first search the top-10 similar patches based on MSEs across
the whole image for each patch. Then, the average MSE is
converted into a probability based on Gaussian function. As
shown in Fig. 2, the subfigures (b) and (d) are the heat maps
for the patch repetitiveness of (a) — an normal 2D sub-image
in (1), that for the patch repetitiveness of (c) — the difference
image — in the variation space in (4) and that for the patch
repetitiveness of (d) in the variation space in (4), respectively.
In these heat maps, the colors from red to blue signify the de-
crease of patch repetitiveness values. Compared with (b), the
extensions (d) significantly increase the patch repetitiveness.

We also simply compare the variational learning and the popu-
lar residue learning [19,20] for image upsampling. Although residue
learning achieves rather impressive results in image SR, these well
developed approaches cannot be directly applied for image interpo-
lation. The similar conclusion has been mentioned in [11]. Com-
pared the blur matrix in image SR, the identity matrix H in image
interpolation does not cut-off the signal at a certain frequency band
in the sampling. Natural images are usually not band-limited due
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Fig. 4. The architecture of our proposed variation learning network (VLN) for image interpolation.
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Fig. 3. Deep learning-based image interpolation and their PSNR
results.

to many sharp structures, thus the measured signals are usually spa-
tially discontinuous compared with that from image SR degradation.
This difference makes deep-learning based SR methods, which rely
on the smoothness of image signals, fail to handle image interpola-
tion. Fig. 3 shows an example, the above mentioned deep-learning
image SR methods — VDSR (retrained with interpolation degrada-
tion) — results in blurring and artifacts of ringings and zippers.

3. VARIATION LEARNING NETWORK FOR IMAGE
INTERPOLATION

We turn our variation image model (4) into an end-to-end trainable
variation learning network (VLN) for image interpolation. In gen-
eral, our network takes a recurrent convolutional structure that per-
forms a progressive recovery route and models the first three dimen-
sions naturally. Firstly, the network extracts LR features by the first
convolution. Secondly, the features are transformed and enhanced
from the LR space to HR space iteratively. Thirdly, the variation map
is reconstructed by the last convolution on the enhanced features.
Fourthly, the proposed network finally combines the pixel varia-
tion and the corresponding top-left pixel in each non-overlapped
patch. Finally, the HR image is reconstructed by a location-aware
up-sampling layer. The layer transforms the pixels of four maps (LR
image and HR sub-images) into the HR image prediction.
Specifically, we illustrate each part in formulation:

1. Feature extraction and reconstruction. The front-end convo-
lution extracts features f; from the LR image, and the penul-
timate convolution layer reconstructs the HR difference maps
from features ££. The relation between £, ££ and the other
part of the network is

fli = max((), Wexiract * y + bcxtract)y (5)
Ax = [Axﬂ, Axu, AXdl7 AXdr} = Wrecl * f(ﬁ + brect» (6)
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where y is the input LR image, and Wexract and Dexiract de-
note the filter parameter and basis of the first convolution
layer — feature extraction layer, respectively. As shown in
Fig. 4, Axy, Axy,Axa and Axg, are the estimated top-left,
top-right, down-left and down-right values in every 2 X 2 non-
overlapping patch by the reconstruction layer. We and byect
denote the filter parameter and basis of the reconstruction lay-
er. Axg,Axqg and Axg, are then added with the LR image re-
spectively to generate the corresponding HR pixels X (a four
channel feature map) in these locations, and Axy equals to a
zero map due to the location correspondences in the degrada-
tion.

. Progressive feature enhancement. Let f¥ denote the input

feature map for the recurrent sub-network at the k-th recur-
rence. The output feature map of the recurrent sub-network,
£k, is progressively updated as follows:

f(ﬁn = max (07 Mk + +f1ﬁ)7
M* = (Wﬁnd * fig + bﬁud) ) @)
frg = max (0, Wh+ £ +bh),

where £f = £5-1 is the output features by the recurrent sub-
network at (k — 1)-th time step. W and b are the filter
parameter and basis of the first convolution in the k-th itera-
tion. WE., and b%,, are the filter parameter and basis of the
second convolution in the k-th iteration. The by-pass connec-
tion here is between ¥ and £Y,. The feature map £, can be
viewed as the recovered k-th layer details of the feature maps.

. Location-aware up-sampling. The location-aware up-sampling

layer transforms four variation maps back to the HR lattice as

Xup (i, J,¢) = %([i x s, [j x 5], ), ®)

where |-| denotes the floor operation, s signifies the scale
of one convolution path, p signifies the group of the output
number. Here s is set to 1/2 and 1/3 with the scaling factor
2 and 3 reflectivity. ¢ and j denote the spatial location and ¢
denotes the channel number. ‘up’ denotes the output result is
up-sampled to the HR lattice. p is calculated as follows,

p=>G—lixs|—1)x1/s
+(@—-lixs)+1 ©)



4. Network training. Let F(-) represent the learned network to
recover the HR image x based on the input LR image y. We
use O to collectively denote all the parameters of the network,

@ = {Wextracty bextrach Win, bin,
Wmid, bmid, Wrecn brecl} . (10)

Given n pairs of HR and LR images {(X;, Y;)}"_, for train-
ing, we adopt the following joint MSE to train the HR image
estimation network parameterized by ©:

n

L©) = LS (IR (Y, Xs0) - X2 (D

n -
i=1
It is optimized by scholastic gradient descend (SGD).

4. EXPERIMENTAL RESULTS

The proposed algorithm is compared with conventional polynomial-
based Bicubic interpolation method and six state-of-the-art inter-
polation algorithms, including soft autoregressive interpolation
(SAI) [8], similarity modulated block estimation (SMBE) [21], con-
sistent segment adaptive gradient angle interpolation (CSAGA) [22],
adaptive general scale interpolation (AGSI) [23], nonlocal autore-
gressive modeling (NARM) [11] and fast interpolation via random
forest (FIRF) [13]. We compare the proposed VLN with recent
interpolation methods on three benchmark datasets: Interpl5, In-
terpl8 and Urbanl2, with the scaling factor 2. The three datasets
contain 15, 18 and 12 images respectively. Among them, the images
in Interpl5 are from the Kodak and USC-SIPI image databases.
Interpl8 is used for the evaluation in [13]. Urbanl2 includes 12
urban landscapes images from Urban [24] dataset, that contains the
images with many regular repetitive building patterns. Our dataset
and all experimental results are online available'. Peak Signal-to-
Noise Ratio (PSNR) and Structural SIMilarity index (SSIM) [25]
are used to evaluate the experimental results.

We trained our VLN with a training set containing 591 im-
ages, consisting of BSD500 [26] and 91 images in [27]. They were
cropped into 40 x 40 input and 80 x 80 output patches. These images
were decomposed into around 500,000 sub-images using a stride of
20 with the data augmentation of flipping and rotation. Our VLN
was trained on Caffe platform [28] via stochastic gradient descent
(SGD) with standard back-propagation. The momentum is set as
0.9, the initial learning rate as a fixed value 0.001 for front-end lay-
ers and 0.00001 for the penultimate layer (before the fixed location
up-sampling layer) during the training. The learning rate is dropped
when reaching 250,000 iterations by a factor of 10. The batch size
is set as 64. We allowed at most 300,000 back-propagations, which
spent about 7 hours on a single GPU — GTX 1080.

The objective evaluation results are shown in Tables 1 and 2. The
results clearly demonstrated that our method consistently outper-
forms those well-established baselines with significant performance
gains. For Setl5, Setl8 and Urbani2, our method — VLN (20L) —
achieves better performance than FIRF with gains of 0.42, 0.52 and
1.15dB in PSNR, respectively. We also present some visual results
in Figs. 5 to investigate all the methods intuitively. The results clear-
ly show the significant superiority of our method to other baselines.
From the figures, other compared methods generate the results with
severe artifacts. The superiority obviously appears in the regions of

U http://www.icst.pku.edu.cn/struct/Projects/VLN.html

the axises in Bicycle, the repetitive patterns of house wall in Light-
house and the window boundaries in 080. To further evaluate the
generality of our method, we also compare more challenging 3 x en-
largement. The compared approaches include Bicubic and NARM.
Other methods do not support this scaling factor. From Table 2, our
method achieves significantly superiors performance than NARM,
with gains more than 0.5dB in PSNR.

Table 1. The average PSNR (dB) Results on Serl5, Setl8 and Ur-
bani?2 in 2x enlargement.

Image [ Bicubic SAI SMBE CSAGA AGSI
Setl5 28.81 29.19 29.32 29.20 29.06
Setl8 28.82 29.44 29.47 29.29 29.33
Urbani2 23.29 23.86 24.01 23.96 23.88
Image NARM FIRF (1) FIRF(5) VLN (IOL) VLN (20L)
Setl5 29.47 29.58 29.81 30.19 30.23
Setl8 29.75 29.98 30.11 30.55 30.63
Urbanl2 23.98 24.85 24.97 25.90 26.12

Table 2. The average PSNR (dB) Results on Setl5, Setl8 and Ur-
banl2 in 3 X enlargement.

Image [ Bicubic NARM VLN (20L)

Setl5 25.68 26.60 27.12

Setl8 25.24 25.31 26.72
Urbanli?2 20.49 22.00 22.50

Fig. 5. Visual comparison between different algorithms in 2x en-
largement. From top to bottom: Bicycle in Setl8, Lighthouse in
Setl5, 080 in Urbani2. From left to right: HR, Bicubic, SAL, NAR-
M, FIRF, Proposed.

5. CONCLUSIONS AND DISCUSSIONS

In this paper, we propose a novel three-dimensional variation image
representation and develop a variation learning network. The repre-
sentation focuses on the correlation between high-frequency image
signals, imposes priors directly on the variation between the LR and
HR images and includes a number of structural correspondences.
Owning to these benefits, a variation learning network is construct-
ed for image interpolation. Embedding the local dependency, the
network transforms and enhances image signals from LR space to
HR space gradually, leading to a surprisingly superior performance
than previous methods and offering the new state-of-the-art.
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